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ABSTRACT
We demonstrate a system, DocRicher, to enrich a text doc-
ument with social media, that implicitly reference certain
passages of it. The aim is to provide an automatic anno-
tation interface to satisfy users’ information need, without
cumbersome queries to traditional search engines. The sys-
tem consists of four components: text analysis, query con-
struction, data assignment, and user feedback. Through text
analysis, the system decomposes a text document into ap-
propriate topical passages, of which each is represented using
detected key phrases. By submitting combinations of these
phrases as queries to social media systems, the relevant re-
sults are used to suggest new annotations, that are linked to
the corresponding passages. We have built a user-friendly
visualization tool for users to browse automatically recom-
mended annotations on their reading documents. Users are
either allowed to rate a recommended annotation by accept-
ing it or not; or add a new annotation by manually high-
lighting texts and adding personal comments. Both these
annotations are regarded as the ground truth to derive new
queries for retrieving more relevant contents. We also apply
data fusion to merge the query results from various contexts
and retain most relevant ones.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models, Relevance feedback, Clustering

General Terms
Theory and design

Keywords
Document enrichment, Social media, Ranking

1. INTRODUCTION
The popularity of e-reader applications for desktops, tablet-

s and mobile devices, gives rise to implicit information need
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of readers. To enhance users’ reading experience, existing
systems attempt to augment text documents with supple-
mentary materials mined from the web (e.g., [1, 6, 10, 12]).
Though making much progress on linking web contents to
words, phrases, and sections, they either require the doc-
ument to have explicit section structure, or assume that
items (words or phrases) are really important for readers.
Such assumptions, however, are indeed unpractical. First,
many text documents like web pages do not have obvious
section structure. Second, no technique can guarantee that
all readers are interested in the selected items based on their
respective requirements. Others attempt to link social medi-
a to a short article (e.g., [10]). It is hard to adapt such work
to support lengthy documents, as they completely ignore the
reference between social media and the detailed contents.

In this paper, we focus on a new task: given a text doc-
ument, we find social media contents, which implicitly ref-
erence certain passages of it. We use social media as the
augmentation materials, instead of other web contents for
two reasons. First, social media often reflects an individu-
al’s interests [11]. This presents the opportunity to amplify a
document with additional information following users’ inter-
ests. Second, social media often contains rich information,
such as images and videos, that can enhance the text con-
tents. This avoids the complex steps in previous work, to
identify media data like images, from the results of search
engines [1]. We focus on attaching social media to relevant
passages of the document, instead of specific terms or the
whole article. We believe that this is a better way to direct
users to better understand the detailed reference between
them. It poses three challenging problems to address the
task: 1) How to segment the document into appropriate
granularity of passages? 2) How to generate effective key-
word queries to retrieve relevant social media? 3) How to
efficiently assign the query results into correct passages?

We develop an automatic annotation system, denoted by
DocRicher, by proposing techniques to solve the aforemen-
tioned problems. The main idea follows three steps in Figure
1 from (a) to (c). In Step 1, we detect the topic hierarchy of
a document, to decompose it into an appropriate number of
textual units. Although several topic hierarchy generation
techniques have been proposed (e.g., [2, 14]), they either
have no guarantee of obtaining high quality of segmentation
[3], or are difficult to construct the topical tree. Consequent-
ly, we define the problem as finding a best clustering among
consecutive text segments, and adapt the idea of finding the
V-optimal histogram [8], to solve it. We employ a dynamic
programming algorithm to find best boundaries among clus-
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Figure 1: System workflow

ters, and use the clustering results in each iteration to build
each level of topic hierarchy. Step 2 uses the topic hierar-
chy to generate a limited number of keyword queries. Each
query is constructed from a subtree in the hierarchy, con-
taining combinations of selective phrases in the tree nodes
within the subtree. The number of queries can be flexibly
controlled by the rate limit in social media systems1. In
Step 3, the returned results are only propagated to the leaf
nodes in the corresponding subtree. We assign each result in
a greedy way, by computing its Overlap to each tree node.
Within a leaf node, we map most relevant results into the
location of a segment based on the cosine similarity.
Based on the above methodology, the system automatical-

ly crawls social media systems, and assigns the query results
to relevant passages in a document. For each passage, the
assigned results are used to generate annotations for recom-
mendation. As shown in Figure 1 (d), the system also im-
plements a user-friendly interface to visualize the suggested
annotations, allowing users to make feedback by accepting
them or not. Moreover, users are allowed to add manual
annotations by attaching personal comments into highlight-
ed texts. We take the accepted results of highest ranks and
the manual annotations of most popular as new contexts to
build new keyword queries, and use effective data analytics
and fusion tools to refine the query results.
Compared to existing systems, we provide a more elegant

platform to augment a document with social media. First,
social contents present the opportunity to amplify a docu-
ment with information following the user’s interests. Sec-
ond, displaying annotations by highlighting the correspond-
ing passages are more user-friendly for users to understand
a document. This avoids the complex term selection tech-
niques required by existing work, and overcomes the limi-
tations on previous work that can be only applied to docu-
ments with explicit section structures.

2. TECHNICAL FOUNDATION

2.1 Text Analysis
Given a document, we analyze its text contents to con-

struct a topic hierarchy, aiming to decompose it into an ap-
propriate number of textual units. This paper defines the
problem as finding a best clustering among consecutive text
segments based on the term vector model [4].

1http://en.wikipedia.org/wiki/Rate limiting
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Figure 2: Segment vectors from a text document

Let d be a text document, t be a term representing a
word, and |d| = M be the total number of unique terms in
a document. Suppose that a document is partitioned into
N segments and each segment is represented as a weight
vector in the term space. Let {s1, . . . , sN} be the set of N
segment vectors, where each si ∈ RM for 1 ≤ i ≤ N , i.e.,
si = (w1,i, . . . , wM,i). For 1 ≤ j ≤ M , we have

wj,i = tf(tj , si)× isf(tj) = tf(tj , si)× ln
N

sf(tj)
,

where tf(tj , si) is the frequency of tj in si, and sf(tj) is
the number of segments containing tj . The weight evalu-
ates a term based on its frequency within a segment and its
distribution across all segments. We have isf(tj) = 0 if tj
appears in every segment. This helps to avoid terms that
may not be useful for identifying segment boundaries.

Example 1. In Figure 2, a text document is preprocessed
and partitioned into 7 segments, i.e., N = 7. The ter-
m space has totally 12 unique terms, i.e., M = 12. For
each segment vector si with 1 ≤ i ≤ 7, we compute its
weight value from w1,i to w12,i. For example, s3 is computed
as <0.847298, 0, 0, 0, 0, 0, 1.945910, 0, 0, 0, 0, 1.252763>. The
weight value of w1,3 = tf1,3 × isf3 = 1× ln 7

3
= 0.847298, as

there are three segments containing the term of “bookstore”.

We preprocess the text document before using the term
vector model. There are typically three steps for document
preprocessing: sentence boundary identification, top-word
elimination, and stemming [7]. In general, the punctuation
of dot is used as the sentence boundary, and words without
any semantic information are eliminated. For the purpose
of stemming, we use a popular open source tool [9].

As segments may have different lengths, we normalize a
segment vector si to a unit segment vector ŝi, i.e.,

ŝi =
si

∥si∥
,

where ∥si∥ is the L2 norm of si. It can be computed as√
w2

1,i + w2
2,i + . . .+ w2

M,i. Intuitively, this normalization

helps to identify similar segments that have different lengths
but deal with the same topic. A normalized segment vector
ŝ lies on the unit sphere in RM . For example, the segment
vector s3 in Figure 2 can be normalized into a unit vector
ŝ3 of <0.343797, 0, 0, 0, 0, 0, 0.789567, 0, 0, 0, 0, 0.508318> as
shown in Figure 4. Given two such unit vectors ŝ1 and ŝ2,
let θ(ŝ1, ŝ2) denote the angle between them. The cosine
similarity is computed as the inner product, i.e.,

cos(θ(ŝ1, ŝ2)) = ŝ1
T ŝ2.
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In this paper, we use the cosine similarity to evaluate the
similarity between two segments. Intuitively, two segments
with higher cosine value are more similar. That means that
they may have more similar term distributions, and may
follow the same subtopic. Accordingly, we formulate the
problem of finding a best clustering among consecutive text
segments as follows.

Problem 1. Given a text document with its normalized
segment vectors, a limit k on the number of clusters, and
an objective function called “MaxQuality”, find a clustering
that maximizes the objective function and follows the con-
straint that each cluster contains continuous segments.

The objective function, is the sum of cosine similarities
between all segment centres and their neighborhoods in the
same cluster. In each cluster denoted by Ii, the segment
centre is defined as ci =

1
|Ii|

∑
ŝ∈Ii

ŝ, where |Ii| is the number

of segments in the cluster Ii. We normalize it as ĉi =
ci

∥ci∥
.

Then the MaxQuality of Ii is computed as∑
ŝ∈Ii

ŝT ĉi = ∥
∑
ŝ∈Ii

ŝ∥.

We develop an optimal algorithm to solve problem 1. The
solution is similar to finding the V-optimal histogram using
dynamic programming [8], that attempts to find the best
boundaries among k clusters by maximizing the objective
function. The optimal algorithm uses a systematic search
to solve the problem. In Figure 3, the optimal clustering
of k clusters can be reduced to the optimal clustering of
k-1 clusters by enumerating all possible boundaries for the
last kth cluster. Therefore, the MaxQuality of the optimal
clustering can be computed using dynamic programming.

s1 … … … … si-1… si sN…

Optimal clustering with k-1 clusters

Optimal clustering with k clusters

^ ^ ^ ^ 

Figure 3: The basic idea on dynamic programming

Continuing with Example 1, suppose we normalized the 7
obtained segment vectors into unit vectors. We then present
how to build a V-optimal histogram with k = 3 clusters on
these unit vectors using dynamic programming.

Example 2. Consider the input of 7 unit segment vectors
in Figure 4 (a). Figure 4 (b) shows three iterations to run the
optimal algorithm. Iteration 1 first constructs the V-optimal
histogram with 1 cluster. The MaxQuality is computed
for every possible interval. For example, MaxQuality[1..3]
is computed as the MaxQuality in the interval of “1..3”
(= {ŝ1, ŝ2, ŝ3}), i.e., MaxQuality[1..3] = 2.23. Iteration
2 constructs the histogram of 2 clusters using the results
from Iteration 1. Figure 4 (b) shows an example to cal-
culate MaxQuality[1..7]. There are six possible clustering.
By computing the MaxQuality for each clustering, the sec-
ond or fifth one is the best one that has a maximum value.
Our algorithm randomly pick the fifth one as the best clus-
tering. Thus, we have MaxQuality[1..7] = 4.86. Similar-
ly, Iteration 3 computes the histogram of 3 clusters. Final-
ly, the optimal clustering for 7 given vectors is found with
MaxQuality[1..7] = 6.04.

We use the output of the optimal algorithm to produce
the topic hierarchy in a top-down approach. See the run-
ning example in Figure 4. We output the best clustering in
each iteration of the optimal algorithm and retain the hier-
archical relationships between clusters as shown in Figure 4
(c). Then, the topic hierarchy can be naturally generated
by representing each node using the selective keywords or
phrases from the segment centre in each cluster as shown in
Figure 4 (d). The only problem is how to extract informa-
tive keywords to label the tree nodes. We use a new ranking
score, denoted by ctf-dtf, for selecting the keywords based
on the term frequency. Given a cluster Ii and a term t. The
ctf(t, Ii) is the number of occurrences of t in Ii. The dtf(t)
is the number of occurrences of t in the whole document d.

ctf-dtf(t, Ii) = α× ctf(t, Ii)

|Ii|
+ (1− α)× dtf(t)

|d|

Here, α is a predefined weight with 0 ≤ α ≤ 1. In our
implementation, we use α = 0.5. A term occurring both
frequently in the cluster and in the whole document will
have a high ranking score. Consequently, it will be a strong
candidate for being a representative keyword. Consider the
cluster in the first level in Figure 4 (c). Terms “bookstore,
. . ., word” of higher scores are selected, and used as labelled
keywords for the root tree node as shown in Figure 4 (d). To
detect key phrases containing more useful context informa-
tion, we use an adjacency list to index each item, storing all
its adjacent words in the document. For any two keywords,
we use the adjacency list to check whether they are adja-
cency or not, and return the count they appear together in
a passage. If the count exceeds a given threshold, we com-
bine them into one phrase. In Figure 4 (d), two keywords
“closed” and “yesterday” are combined into one phrase.

In our optimal algorithm, the parameter k is flexible to
control the granularity of segmentation, i.e., the node num-
ber: how many textual units are to be identified at each
level. With dynamic programming, we can expand the level
number by incrementally computation from its parent level,
with guarantee on the quality of clustering, i.e., the qual-
ity of segmentation in each level. As far as we know, no
previous technique can satisfy all these requirements.

2.2 Query Construction
The topic hierarchy can represent a text document in

a top-down fashion. That is to say, the lower-level nodes
can summarize topical passages more specifically than the
upper-level ones, by reserving the context. Based on the
hierarchy, it is easy to derive multiple queries for retriev-
ing relevant social media contents. The naive approach is
to construct one query for each root-to-leaf path, using the
combination of selective phrases in the leaf node. As shown
in Figure 4 (e), three queries are generated using all the
root-to-leaf paths of the topic tree in Figure 4 (d). For each
query path, the selected keywords or phrases are submitted
to the API of social media systems like Twitter Search API
using the OR search2. Clearly, the query count is equal to
the leaf node number. Note that a phrase including multiple
keywords is regarded as AND operators in the search.

In practice, the naive solution sometimes fails to satisfy
our requirements, as the social media system like Twitter

2https://dev.twitter.com/rest/public/search
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Figure 4: A running example

has the rate limit problem3. The need arises to construct
a limited number of queries, especially when the allowed
request number is less than the leaf node number. So far,
no work takes this need into account.
We propose a bottom-up aggregation method to reduce

the query number. The intuition is to group some query
paths together if their leaf nodes contain the lowest com-
mon ancestor4 (LCA). Based on the property of topic tree,
each level only has one pair of nodes derived from a LCA
in one step higher level. If we aggregate two query paths
containing this pair of nodes into one subtree from the bot-
tom level, we can reduce the query number one by one until
the cardinality of query set obeys the rate limit. For each
query subtree, we can construct one query using the selected
phrases of its LCA, as an OR search to retrieve social me-
dia systems. For a query subtree having only one branch,
we can use any descendant as the selected LCA. Continuing
with the example in Figure 4 (e), Q2 and Q3 are grouped
into one query using their LCA in Figure 4 (f). The LCAs
are presented in the red circles in Figure 4 (d).
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[2,3]

5

1 2 3 4

Q1 Q2 Q3 Q4 Q1 Q5 Q4
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Q2 and Q3

5

1 2 3 4

6

Q1 Q6

Use LCA[3,4] 

to aggregate 

Q5 and Q4

Figure 5: An example to store LCAs

To efficiently support query aggregation, the need arises
to pre-compute LCAs for each pair of consecutive nodes in
the topic tree. We adapt Tarjan’s off-line lowest common
ancestors algorithm [5], to store LCAs in each level of the
tree. See Figure 5. Given a four-level topic tree, we find
LCAs for each pair of consecutive leaf nodes, which are in-
dexed in a list. For example, the LCA of leaf nodes 2 and

3https://dev.twitter.com/rest/public/rate-limiting
4http://en.wikipedia.org/wiki/Lowest common ancestor

3 is denoted by “[2,3]” in the list of LCAs. Clearly, each
level contains only one LCA, and the LCA list is ordered by
level number from bottom to top. With this index, it is easy
for us to apply the bottom-up query aggregation. Suppose
the limit only allows us to submit two queries. Given four
root-to-leaf paths, we have four queries of Q1, Q2, Q3, and
Q4, which are constructed using the combination of phras-
es from four leaf nodes. We show how to reduce the query
number using the LCA index. We scan the list to first access
the LCA of “[2,3]”. Then, the query paths containing leaf
nodes of 2 and 3 are aggregated into one query subtree, as
shown in the red dotted region in the second three in the
figure. Then a new query Q5 is generated by using the LCA
of node 5. Similarly, we can further integrate two queries of
Q5 and Q4 into one query of Q6 by using the LCA of “[3,4]”.
Thus, the two queries of Q1 and Q6 are finally constructed
and submitted to the social search API.

2.3 Data Assignment
While obtaining relevant social media contents, we employ

a propagation based method to assign the query results to
relevant passages in two phases.

1. For each query, we propagate the returned results down
to the descendant nodes of the query subtree using
a greedy algorithm. For each result, we compute its
Overlap to all the descendant nodes, and assign it to
the one with the highest Overlap value. All results are
finally assigned into the leaf nodes of the topic tree.

2. For each leaf node, we use the cosine similarity to rank
the results and map each result into the appropriate
segment (passage). For each segment, we only retain
most relevant results and discard those of very low
ranking scores. Moreover, if there is no result in a
segment, we submit the selected phrases of it as an
AND search to retrieve its relevant contents.

We use the Overlap to evaluate the similarity between a
result and a tree node, that is defined as the size of the
intersection between two term vectors. To finally rank the
assigned results for a passage, we use cosine similarity as it
is a most common measure [4].
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2.4 User Feedback
As described above, the query results are used to automat-

ically suggest annotations that are attached to appropriate
passages. We further improve the quality of enrichment by
adopting the idea of crowdsourcing5. That is, we implement
a visualization tool that allows users to browse social media
annotations for a document and make feedback. Users can
either rate the relevance of a suggested annotation by accep-
t or reject it, or manually add an annotation with personal
comments by highlighting texts. For a suggested annota-
tion, we assume that it is more relevant if more users accept
it and vice versa; while for a manual annotation, we consid-
er it is more popular with more likes and replies (users can
like or comment a manual annotation). According to user
feedback, we use the most relevant or popular annotations
as the ground truth, to generate new queries for retriev-
ing social media. See Figure 6. The crowdsourcing results
from users are re-used as the new contexts for construct-
ing queries. We also apply standard data fusion approaches
[13], to merge query results from various contexts and retain
most relevant social contents.

2.5 Technical Advantages
The topic hierarchy generation algorithm is the main tech-

niques in our DocRicher system. It contains obvious benefits
that are three-fold: 1) we propose a global optimal solution
with guarantee on the quality of clustering in each level of
the topic hierarchy; 2) we provide a flexible way to generate
a given number of keyword queries using the hierarchical re-
lationship, overcoming the rate limit problem of social APIs;
3) we use the propagate strategy to assign the query results
to avoid unnecessary cross-passage similarity computations.

3. DEMONSTRATION
We demonstrate the DocRicher system, with all charac-

teristics described above, such that users can have better
understanding of how DocRicher employs social media con-
tents like Tweets to augment a document.
Figure 7 presents a snapshot of the ebook reader interface

after automatic enrichment on a guide book6. The right col-
umn exhibits the ebook reading panel; while the left panel
marked as (A) presents the “Top Related Tweets”, which
are suggested annotations automatically returned from our
DocRicher system. Users can conveniently browse new in-
coming tweets by clicking the “Enrich” button on the top.
When users move the mouse cursor to a specific tweet, such
as the one marked as (B), the ebook reading panel automat-
ically show up the highlighted texts of the corresponding
passage, marked as (C), that is associated with the tweet.
Meanwhile, users can interact with the system to judge that
whether a suggested tweet is relevant to the highlighting
passage or not, by clicking the “Accept” or “Reject” button
inside the tweet. Users are also allowed to do a manual an-
notation by highlighting a passage and writing the comment.
The region marked as (D) lists such manual annotations.
DocRicher is equipped with an automatic recommenda-

tion system based on knowledge discovery on a text docu-
ment and its annotations. We run a periodical task on the
background to process each text document. Given a page of
“Tourist Guide Sydney” as an example, we first analyze its

5http://en.wikipedia.org/wiki/Crowdsourcing
6The book is from http://www.australiatourism.com.

text contents to generate a three-level topic tree, as shown
in the region marked as (E), with each node consisting of
extracted phrases. For example, the second leaf node has
phrases of tourist, Sydney Opera House and Opera, which
are summarized from the passage marked as (C). We con-
struct a query with combinations of these phrases to search
the Twitter API, and visualize most relevant results for user-
s to understand the underlying discoveries in an interactive
manner. For example, the first three tweets in the region
marked as (A) are the top-3 results. If the suggested anno-
tation marked as (B) is accepted as a relevant result by many
users, then we save this as a permanent annotation, that will
be late displayed in the region marked as (D). We further
adopt those permanent annotations with highest relevant s-
cores to construct new queries for retrieving social media,
and do data fusion for both old and new results. The top
results for each passage are updated, and will be displayed in
the region marked as (A) when users refresh current“Tourist
Guide Sydney” page or click the “Enrich” button.
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Figure 6: The architectural implementation of user feedback

Figure 7: Current ebook reader with enriched tweet annotations
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